Worksheet for 2021-08-30

Conceptual questions

Question 1. Find a parametrization for the curve $y^{2}=x^{3}$ that Question 3. True or false: for a parametric curve $x=$ traces out the entire curve (not just part of it!).
Question 2. Let $x=f(t), y=g(t)$ be a parametric curve $f(t), y=g(t)$, we have $\mathrm{d}^{2} y / \mathrm{d} x^{2}=\frac{\mathrm{d}^{2} y / \mathrm{d} t^{2}}{\mathrm{~d}^{2} x / \mathrm{d} t^{2}}$. such that $g^{\prime}(3)=0$. What can you conclude (if anything) about the tangent line at $t=3$?

Computations

Problem 1. Find a Cartesian equation for the parametric curve $x=t^{3}+t, y=t^{2}+2$. Hint: compute x^{2}.
Find the slope of this curve at the point $(10,6)$. If you remember implicit differentiation, try using that on the Cartesian equation and check that you get the same answer.
Problem 2 (Stewart $\$ 10.2 .54$). Compute the arclength of the "astroid" $x=\cos ^{3} t, y=\sin ^{3} t$ depicted in Figure 1. (Stewart $\$ 10.2 .34$ asks you for the area.)
Problem 3. There are two points on the curve

$$
x=2 t^{2}, y=t-t^{2},-\infty<t<\infty
$$

where the tangent line passes through the point $(10,-2)$. Find these two points.

CONCEPTUAL
 (1) $\begin{aligned} & x=t^{2} \\ & y=t^{3} \quad-\infty<t<\infty\end{aligned}$

(2) If we also knew that $f^{\prime}(3) \neq 0$ then we could conclude threat the tangent at $t=3$ is horizontal. But as it stands, we can't conclude that.
(3) Very false! See the beginning of $\oint_{10.2}$.

